

Flying, the multimodal way!

Environmental aspects, multimodality and aviation

Annika Paul Bauhaus Luftfahrt

Environmental aspects, multimodality and aviation

Why is it important to consider and integrate **multimodal aspects** in future air transport planning?

What is the role of **environmental factors** in future passenger behaviour?

The concept of intermodality / multimodality

- Multimodality and intermodality mostly used in the same way
 - (1) the capacity of travellers to use alternative transport modes to perform the same trip;
 - (2) the consecutive use of different means of transport for the same trip.

Passenger travel chain from door to door

Why do environmental aspects play an important role?

- Possible effects of changing environmental awareness and regulations on demand for air transport
 - Compensation
 - Substitution away from air
 - No air travel at all
 - No air travel on short-haul routes

Environmental considerations in transport

Source: Kluge, U. and Habersetzer, A., 2019, Air Transport Research Society Conference

Passenger behaviour and mode choice

Environmental Traveller	
	the second second
MAIN TRAVEL PURPOSE	BLEISURE
PREDOMINANT AGE GROUP	30 - 44
TRAVEL ACTIVITY	0.5 TRIPS / YEAR
INCOME LEVEL	€€€€€
EXPENDITURE ON TRANSPORT	メ × × × ×
ICT USAGE	
TRAVEL PARTY SIZE	ائم ائم ائم الم
CHECK-IN LUGGAGE	jii jii jii jii
ACCESS MODE CHOICE	📮 🛱 🏤 🧱 Tari
	Drawmad hu Diktroht

Source: Bauhaus Luftfahrt Yearbook 2019; EIB 1st and 2nd climate survey, https://www.eib.org/en/surveys/index.htm

Environmental incentives and regulation

- Passengers
 - (Voluntary) compensation schemes
 - Overall carbon budget / allowance
- Operators
 - Offsetting
 - Emission trading
 - Carbon taxes

.

-

fr, 13.11.20

START REQUEST

④ 13:00

Compare the energy consumption, the CO2 emissions and other environmental impacts for planes, cars and trains in passenger transport

CHOOSE YOUR ROUTE

CHOOSE YOUR DATE AND TIME

00

O Departure

Emissions from different modes of transport Emissions per passenger per km travelled

CO2 emissions Secondary effects from high altitude, non-CO2 emissions

Source: BEIS/Defra Greenhouse Gas Conversion Factors 2019

BBC

Source: <u>http://www.ecopassenger.org/bin/query.exe/en?L=vs_uic</u>

Impact on the (future) aviation system

- Routes and stage length
 - Least CO₂ emissions options
- Aircraft types
 - Most efficient in terms of fuel consumption (per passenger)
 - Future fleet composition
- Airport access mode choice
 - Pooling options, public transport

Source: https://www.momondo.de/flight-search/MUC-LAX/2020-12-15/2020-12-22?sort=co2_a

¹ Source: Foresight Factory I Base: 611-3225 online respondents per country aged 16-64 (24 global markets), 2018.

Potential effects on the ATM system

Environment

- Gate-to-gate **CO₂ emissions**
- Horizontal **en-route flight-efficiency** of the flown route
- Number of people exposed to significant noise

Cost efficiency

• Gate-to-gate ANS cost per flight

Operational efficiency

Flight time per flight (minutes per flight)

Capacity

- Changing **fleet composition and aircraft** mix
 - Airside performance: gate / apron / taxi time / runway capacities
 - Landside performance: gate / terminal
 - Airspace performance: IFR movements, network throughput

Predictability and punctuality

• Advanced network operations planning

Modus project

Analyse how the **performance of the overall transport system** can be optimized by considering the entire **door-to-door journey** holistically and considering **air transport within an integrated, intermodal approach**, by

- 1. Identifying and assessing (future) **drivers for passenger demand and supply of mobility**, and how these affect passenger mode choice,
- 2. Applying and further advancing existing models to determine the **demand allocation** across different transport modes, especially air and rail, and the effects on the overall capacity of these modes, and
- 3. Developing and assessing **performance and connectivity indicators** which facilitate the identification of gaps and barriers in meeting high-level European (air) transport goals, and solutions to gaps can be addressed.

Website: <u>https://modus-project.eu/</u>

Medus

Call: ATM Role in Intermodal Transport (H2020-SESAR-ER4-10-2019), Grant no. 891166 Duration: June 2020 – November 2022

