

Substitution path between air and rail in Europe: a measure of demand drivers

Work in progress

Pierre Arich¹, Tanja Bolic², <u>Isabelle Laplace¹</u>, Nathalie Lenoir¹, Sébastien Parenty¹, Annika Paul³, Chantal Roucolle¹

¹Ecole Nationale de l'Aviation Civile, ²University of Westminster, ³Bauhaus Lufthart

25th ATRS World Conference | Antwerp | Online, 26th August 2022

EUROPEAN PARTNERSHIP

This project has received funding from the SESAR Joint Undertaking under the European Union's Horizon 2020 research and innovation programme under grant agreement No 891166.

Co-funded by the European Union

Motivation

- Context
 - increasing environmental awareness, regulatory measures, capacity shortages across different modes, and the need for a more seamless passenger journey
 - optimization and alignment of multimodal transport in Europe to improve the overall performance of the (future) transport system

Modus Project (<u>https://modus-project.eu/</u>)

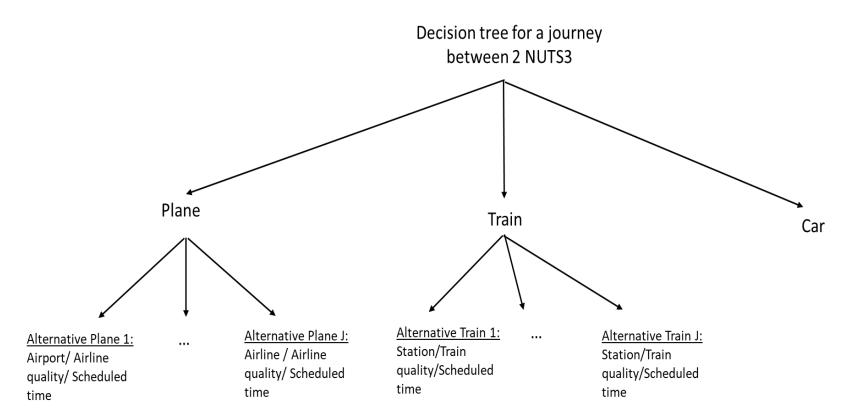
- Objective of this paper
 - identifying the determinants of passengers' choice of transportation
 - Substitution paths between air and rail for French, German and Spanish city-pairs

Literature review

- Inter-modal competition has been extensively studied in the literature
 - Most focus on air-rail competition only ((Albalate et al., 2015), (Behrens & Pels, 2012), (Ortúzar & Simonetti, 2008), (Park & Ha, 2006), (Ivaldi & Vibes, 2008))
 - Others consider sets of other modal alternatives as bus, car-pooling and private cars (Bergantino & Madio, 2020)
- Some authors consider inter and intra-modal competition (Bergantino et al. 2015),(Ivaldi & Vibes, 2008))
- In this paper, we ambition to go ahead with the work of Ivaldi and Vibes (2008) by considering a much larger network

City-pairs and transport supply

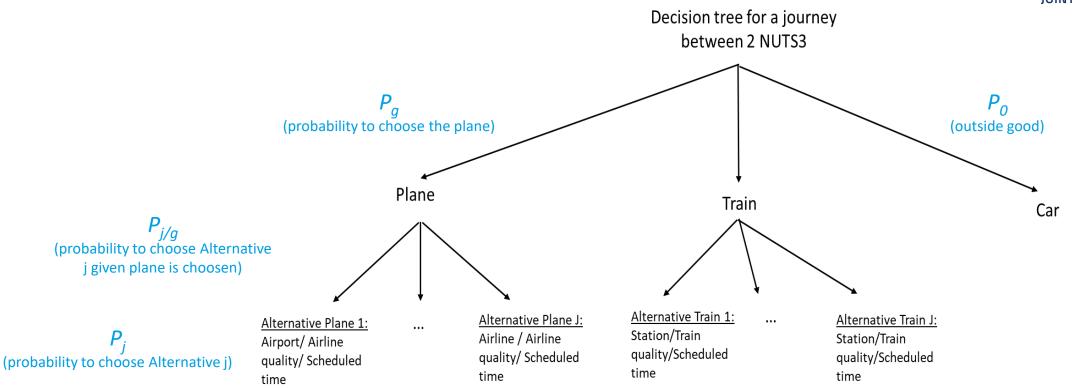
• City-pair definition and selection


- Selection of geographic areas larger than the cities: NUTS3 level
 Several airports and railway stations in departure and arrival OD
- Selection of OD where both air and rail are available direct routes
- Characterization of demand on city-pairs : socio-economic indicators

• Quality in transport supply

- Train: HSR, Intercity, Night
- Plane: Majors, Low-Cost Carriers
 - > High quality supply: HSR, Majors
 - Low quality supply: Intercity, Night, LCC
- Car as another possible mode of transportation

A two-stages decision model



Alternative: combinaison of a mode, service provider (airline/airport or rail station), quality AND corresponding price

Demand for each alternative correspond to the probability to choose the alternative
 Demand expressed in terms of market share

Theoritical model

 $P_i, P_{i/q}, P_q$: theoretical probabilities

➤ we observe the empirical probabilities: market share s_j, s_{j/g}, s_g $\sum_{j} P_{j} = 1 \text{ and } \sum_{j} s_{j} = 1$ Demand is expressed in terms of market share

Demand function

$ln(s_j) - ln(s_0) = \psi_j + hp_j + \sigma ln(s_{j/g})$

- *s_i* : market share of alternative *j*
- $s_{j/g}$: market share of alternative *j* given the choice of mode *g*
- s₀ : market share of the outside good assumed to equal 0.85
- ψ_i : vector of characteristics for the alternative j
 - quality of the service
 - proxy for the size of the market, GDP or population or household average income in departure and arrival areas
- p_j : price of alternative j
- *h* : part of the measure of demand sensitivity to price
- σ : measure of the degree of intra-group correlation; σ belongs to [0,1]

Data collection

Network

French, german and Spanish domestic origin-destination (NUTS3 level) Only ODs were air and rail transport modes are in competition

Data sources:

For air: OAG Schedule Analyzer, FRACS (France Aviation Civile Services) database, airline annual reports, IATA paxIS

For rail: MERITS (UIC database), SNCF, RENFE

Data aggregation

Per route and month in 2016

Per transport mode, operator and equipment

- we observe the frequency, the total number of passengers and the average price
- ➤ frequency is used as a weight in our analysis.

Estimation - results

- One model per country
- Statistical significance of the estimated parameters
- Price: correct negative sign
- *Intra-mode correlation:* high for Germany and Spain, low for France
- GDP as a proxy of market size NUTS3 level

Use of *instrumental variable* method to control for endogeneity between price and market-share

Instrumental variables: Current (monthly 2016) and lagged (monthly 2015) price of energy

		JOINT UNDERTAKING				
Variables	Model	Model	Model			
	France	Germany	Spain			
Price (Price Minimum for Spain)	-0.0443***	-0.0191***	-0.0561***			
	(0.00392)	(0.000870)	(0.0101)			
Ln(sj/g)	0.428***	0.936***	0.929***			
	(0.0589)	(0.0160)	(0.0725)			
GDP NUTS 3 departure (thousand)	0.00248	0.0539***	0.0316***			
	(0.00641)	(0.00421)	(0.0112)			
GDP NUTS 3 arrival (thousand)	0.00265	0.0591***	0.0327***			
	(0.00602)	(0.00441)	(0.0106)			
Attributes of alternatives	YES	YES	YES			
Market fixed effect	YES	YES	YES			
Carrier fixed effect	YES	YES	YES			
Month fixed effect	YES	YES	YES			
Observations	2,162	3,086	386			
Model Statistics						
R-squared	0.841	0.947	0.973			
F-Test	666.5	5437	1303			
loglikelihood	-3281	-2908	-288.6			
Tests of instrumental variables						
Kleibergen-Paap rk LM	128.9	272.7	73.68			
p value	0	0	0			
Cragg-Donald Wald F	228.6	442.4	99.21			
Kleibergen-Paap rk Wald F	114	469.5	148.4			
Hansen J	3.552	2.539	2.041			
Chi-sq() P-val	0.0595	0.111	0.153			
Endogeneity_test	216.8	441.5	41.46			
Chi-sq() P-val	0	0	1.21e-10			
	tandard errors in par					
*** p<0.01, ** p<0.05, * p<0.1						

Measures of demand sensitivity

Price elasticity of demand

$$\eta_j = \frac{dq_j}{dp_j} \times \frac{p_j}{q_j} = hp_j \left(s_j - \frac{1}{1 - \sigma} + \frac{\sigma}{1 - \sigma} s_{j/g} \right)$$

Country	Obs	Mean	Std. Dev.	
France	1,961	-5.338775	1.5893	
Germany	2,582	-9.111078	7.718956	
Spain	272	-10.78422	9.738804	

	Fran	France		Germany		Spain	
	Major	LCC	Major	LCC	Major	LCC	
Plane	-6.031224	-4.736655	-6.112864	-13.54269	-17.58631	-28.53074	
	(1.184566)	(1.898135)	(7.043973)	(6.996517)	(7.067902)	(0.5595279)	
Train	-5.205173	-3.006067	-4.618281	-13.44553	-1.537412	-14.32159	
	(1.396839)	(1.541632)	(4.132778)	(7.827844)	(0.3750869)	(6.238468)	

Conclusion

- Main results
 - Strong sensitivity of modal market shares to changes in the level of fares
 - Intra-mode correlation: high for Germany and Spain, low for France
 - > Competition between modes is higher when intramode competition is lower.
 - Higher price sensitivity of travelers using low quality supply
 - Higher price sensitivity of air travelers
- Next steps:
 - Test of models' robustness, especially for the outside good market share
 - Improving the overall relevance of the models
 - Models can then be used to test the potential impacts of regulatory measures

THANK YOU FOR YOUR ATTENTION

EUROPEAN PARTNERSHIP

This project has received funding from the SESAR Joint Undertaking under the European Union's Horizon 2020 research and innovation programme under grant agreement No 891166.

Co-funded by the European Union