

Substitution path between air and rail in Europe: a measure of demand drivers Preliminary results – do not quote

Pierre Arich¹, Tanja Bolic², Isabelle Laplace¹, Nathalie Lenoir¹, Sébastien Parenty¹, Annika Paul³, <u>Chantal Roucolle¹</u>

¹Ecole Nationale de l'Aviation Civile, ²University of Westminster, ³Bauhaus Lufthart

INAIR 2022 – Bratislava, 9-10 November

EUROPEAN PARTNERSHIP

This project has received funding from the SESAR Joint Undertaking under the European Union's Horizon 2020

research and innovation program under grant agreement No 891166.

Co-funded by the European Union

Motivation

- Context
 - increasing environmental awareness, regulatory measures, capacity shortages across different modes, and the need for a more seamless passenger journey
 - optimization and alignment of multimodal transport in Europe to improve the overall performance of the (future) transport system

Modus Project (<u>https://modus-project.eu/</u>)

- Objective of this paper
 - identifying the determinants of passengers' choice of transportation
 - Substitution paths between air and rail on French, German and Spanish markets

Literature review

- Inter-modal competition has been extensively studied in the literature
 - Most focus on air-rail competition only ((Albalate et al., 2015), (Behrens & Pels, 2012), (Ortúzar & Simonetti, 2008), (Park & Ha, 2006), Ivaldi & Vibes (2008)
 - Others consider sets of other modal alternatives as bus, car-pooling and private cars (Bergantino & Madio, 2020)
- Some authors consider inter and intra-modal competition (Bergantino et al. 2015, Ivaldi & Vibes, 2008)
- In this paper, we ambition to go ahead with the work of Ivaldi and Vibes (2008) by considering a much larger network

Origin-Destination and transport supply

- Origin-Destination definition and selection
 - Selection of geographic areas larger than the cities: NUTS3 level
 - Several airports and railway stations in departure and arrival OD
 - Selection of OD where both air and rail are available direct routes
- Quality in transport supply
 - Train: HSR, Intercity, Night
 - Plane: Majors, Low-Cost Carriers
 - > Major supply: HSR, Legacy carriers
 - Low-Cost supply: Intercity, Night, Low-Cost Carriers
 - Car as another possible mode of transportation

A two-stages decision model

Alternative: a combinaison of a mode, service provider, type of service & corresponding price

Objective of the model:

- > To determine what is the intensity of competition between modes: intermodal competition
- To determine what is the intensity of competition within modes: intramodal competition

 P_i , $P_{i/q}$, P_q : theoretical probabilities

✓ we observe the empirical probabilities: market shares s_j, s_{j/g}, s_g $\sum_{j} P_{j} = 1 \text{ and } \sum_{j} s_{j} = 1$ Demand is expressed in terms of market share

Demand function

$ln(s_j) - ln(s_0) = \psi_j + hp_j + \sigma ln(s_{j/g})$

- *s_i* : market share of alternative *j*
- s₀ : market share of the outside good
- p_j : price of alternative j
- $s_{i/q}$: market share of alternative *j* given the choice of mode *g*
- ψ_j : vector of characteristics for the alternative j
 - type of the service; city or airport departure/arrival; scheduled day and time; distance
 - proxy for the size of the market: GDP or population or household average income in departure and arrival areas
- *h* : part of the measure of demand sensitivity to price
- σ : measure of the degree of intra-group correlation; σ belongs to [0,1]

Demand function

$ln(s_j) - ln(s_0) = \psi_j + hp_j + \sigma ln(s_{j/g})$

- *s_i* : market share of alternative *j*
- $s_{i/q}$: market share of alternative *j* given the choice of mode *g*
- s₀ : market share of the outside good
- ψ_i : vector of characteristics for the alternative j
 - type of the service; city or airport od departure/arrival; scheduled day and time; distance
 - proxy for the size of the market, GDP or population or household average income in departure and arrival areas
- p_j : price of alternative j
- *h* : part of the measure of demand sensitivity to price
- σ : measure of the degree of intra-group correlation; σ belongs to [0,1]

Data collection

Data sources

For air: OAG Schedule Analyzer, FRACS (France Aviation Civile Services) database, airline annual reports, IATA paxIS

For rail: MERITS (UIC database), SNCF, RENFE, Deutsche Bahn

A unique air and rail aggregated database in 2016

Per month, per OD, per alternative:

we observe the frequency, the total number of passengers, the average price

➤ frequency is used as a weight in our analysis.

Alternative: combination of transport mode, operator, type of service

We observe also several characteristics:

For the alternatives: % of departure during the week-end, % of departure across several time slots, distance For the OD, socio-economic characteristics: GDP, population, GDP/capita

Estimation - results

- One model per country
- Use of *instrumental variable* method to control for endogeneity between price and market-share
 - Instrumental variables: Current (monthly 2016) and lagged (monthly 2015) price of energy
- GDP as a proxy of market size NUTS3 level

Main results

- Statistical significance of the estimated parameters
- Validity of the instruments

		JOINT UNDERTAKING		
Variables	Model Model		Model	
	France	Germany	Spain	
Price (Price Minimum for Spain)	-0.0443***	-0.0191***	-0.0561***	
	(0.00392)	(0.000870)	(0.0101)	
Ln(sj/g)	0.428***	0.936***	0.929***	
	(0.0589)	(0.0160)	(0.0725)	
GDP NUTS 3 departure (thousand)	0.00248	0.0539***	0.0316***	
	(0.00641)	(0.00421)	(0.0112)	
GDP NUTS 3 arrival (thousand)	0.00265	0.0591***	0.0327***	
	(0.00602)	(0.00441)	(0.0106)	
Attributes of alternatives	YES	YES	YES	
Market fixed effect	YES	YES	YES	
Carrier fixed effect	YES	YES	YES	
Month fixed effect	YES	YES	YES	
Observations	2,162	3,086	386	
Model Statistics				
R-squared	0.841	0.947	0.973	
F-Test	666.5	5437	1303	
loglikelihood	-3281	-2908	-288.6	
Tests of instrumental variables				
Kleibergen-Paap rk LM	128.9	272.7	73.68	
p value	0	0	0	
Cragg-Donald Wald F	228.6	442.4	99.21	
Kleibergen-Paap rk Wald F	114	469.5	148.4	
Hansen J	3.552	2.539 2.041		
Chi-sq() P-val	0.0595	0.111 0.153		
Endogeneity_test	216.8	441.5 41.46		
Chi-sq() P-val	0	0	1.21e-10	
Robust s	tandard errors in par	entheses		
*** [o<0.01, ** p<0.05, * p	0<0.1	10	

Estimation - results

- One model per country
- Use of *instrumental variable* method to control for • endogeneity between price and market-share
 - Instrumental variables: Current (monthly 2016) and lagged (monthly 2015) price of energy
- GDP as a proxy of market size NUTS3 level

Main results

- Statistical significance of the estimated parameters
- Validity of the instruments
- Price: correct negative sign
- Intra-mode competition: high for Germany and Spain, low for France

		JOINT UNDERTAKING		
Variables	Model Model		Model	
	France	Germany	Spain	
Price (Price Minimum for Spain)	-0.0443***	-0.0191***	-0.0561***	
	(0.00392)	(0.000870)	(0.0101)	
Ln(sj/g)	0.428***	0.936***	0.929***	
	(0.0589)	(0.0160)	(0.0725)	
GDP NUTS 3 departure (thousand)	0.00248	0.0539***	0.0316***	
	(0.00641)	(0.00421)	(0.0112)	
GDP NUTS 3 arrival (thousand)	0.00265	0.0591***	0.0327***	
	(0.00602)	(0.00441)	(0.0106)	
Attributes of alternatives	YES	YES	YES	
Market fixed effect	YES	YES	YES	
Carrier fixed effect	YES	YES	YES	
Month fixed effect	YES	YES	YES	
Observations	2,162	3,086	386	
Model Statistics				
R-squared	0.841	0.947	0.973	
F-Test	666.5	5437	1303	
loglikelihood	-3281	-2908	-288.6	
Tests of instrumental variables				
Kleibergen-Paap rk LM	128.9	272.7	73.68	
p value	0	0	0	
Cragg-Donald Wald F	228.6	442.4	99.21	
Kleibergen-Paap rk Wald F	114	469.5	148.4	
Hansen J	3.552	2.539	2.041	
Chi-sq() P-val	0.0595	0.111	0.153	
Endogeneity_test	216.8	441.5	41.46	
Chi-sq() P-val	0	0	1.21 e-1 0	
Robust st	andard errors in par	entheses		
*** ۵	<0.01, ** p<0.05, * p	p<0.1	11	

Measures of demand sensitivity

• Price elasticity of demand

$$\eta_j = \frac{dq_j}{dp_j} \times \frac{p_j}{q_j} = hp_j \left(s_j - \frac{1}{1 - \sigma} + \frac{\sigma}{1 - \sigma} s_{j/g} \right)$$

Country	Obs	Mean	Std. Dev.	
France	1,961	-5.338775	1.5893	
Germany	2,582	-9.111078	7.718956	
Spain	272	-10.78422	9.738804	

	France		Germany		Spain	
	Major	Low-Cost	Major	Low-Cost	Major	Low-Cost
Plane	-6.03	-4.74	-6.11	-13.54	-17.58	-28.53
	(1.18)	(1.90)	(7.04)	(6.99)	(7.06)	(0.55)
Train	-5.21	-3.01	-4.62	-13.44	-1.53	-14.32
	(1.39)	(1.54)	(4.13)	(7.824)	(0.37)	(6.23)

Preliminary results

- Strong sensitivity of demand to changes in fares leading to substitution between transport modes
- Intra-mode competition: high for Germany and Spain, low for France
 - > Competition between modes is higher when intramode competition is lower.
- Higher price sensitivity of travelers using low-cost supply
- Higher price sensitivity of air travelers

<u>Next steps – policy implications</u>

Investigate on the characteristics of the supply (frequency, days and hours of departure) that regulators should consider to influence the PAX choice towards choices that could be more valued from a societal point of view.

THANK YOU FOR YOUR ATTENTION

chantal.latge-roucolle@enac.fr

This project has received funding from the SESAR Joint Undertaking under the European Union's Horizon 2020 research and innovation programme under grant agreement No 891166.

Co-funded by the European Union