

D2.2 Database structure
 Deliverable ID: D2.2

 Dissemination Level: PU

 Project Acronym: Modus

 Grant: 891166

Call:

H2020-SESAR-2019-2

SESAR-ERA-10-2019

 Topic: ATM Role in Intermodal Transport

 Consortium Coordinator: BHL

 Edition date: 03 May 2022

 Edition: 1.0

 Template Edition: 02.00.05

EXPLORATORY RESEARCH

D2.2 DATABASE STRUCTURE

Page 2

Authoring & Approval

Authors of the document

Name / Beneficiary Position / Title Date

Damir Valput / INX Project team 23/04/2022

Ernesto Gregori / INX Project team 23/04/2022

Inés Gomez / INX Project team 23/04/2022

Antonio Correas / SKY Project team 23/04/2022

Ignacio Correas / SKY Project team 23/04/2022

Pierre Arich / ENAC Project team 23/04/2022

Reviewers internal to the project

Name / Beneficiary Position / Title Date

Annika Paul / BHL Project coordinator 03/05/2022

Reviewers external to the project

Name / Beneficiary Position / Title Date

Approved for submission to the SJU By - Representatives of all beneficiaries involved in the

project

Name / Beneficiary Position / Title Date

Annika Paul / BHL Project coordinator 03/05/2022

Rejected By - Representatives of beneficiaries involved in the project

Name and/or Beneficiary Position / Title Date

Document History

Edition Date Status Name / Beneficiary Justification

1.0 03/05/2022 Release Modus Consortium Document delivered

Copyright Statement © 2022 – Modus Consortium.

All rights reserved. Licensed to SESAR3 Joint Undertaking under conditions.

https://www.sesarju.eu/

D2.2 DATABASE STRUCTURE

Page 3

Modus
MODELLING AND ASSESSING THE ROLE OF AIR TRANSPORT IN AN INTEGRATED,

INTERMODAL TRANSPORT SYSTEM

This deliverable is part of a project that has received funding from the SESAR Joint Undertaking under

grant agreement No 891166 under European Union’s Horizon 2020 research and innovation
programme.

Abstract

This deliverable details the structure of the data lake, providing as well the complete information on

the data sources, their relationships to each other, and all the data management techniques applied.

https://www.sesarju.eu/

D2.2 DATABASE STRUCTURE

Page 4

Table of Contents

Abstract ... 3

1 Introduction ... 5

2 Database: Modus data lake ... 6

2.1 BeSt: Technical description .. 6

3 Data Sources .. 10

3.1 Overview of data sources ... 10

4 Data management techniques ... 13

4.1 MERITS: preprocessing... 13

4.2 UK Rail Delivery Group: data preprocessing .. 16

4.3 Synthetic data generation: city archetypes ... 20

4.4 Renfe Spain data: preprocessing and acquisition .. 23

4.5 Modal choice model: data preparation ... 24

5 Final remarks ... 26

6 References ... 27

List of Tables
Table 1: Data Sources in Modus .. 10

Table 2: SKDUPD_ODI ... 14

Table 3. SKDUPD_POR .. 14

Table 4: SKDUPD_TRAIN ... 14

Table 5: Metadata of the Merits data subset produced for the landside model 15

Table 6: Description of the output files containing data extracted from UK RDG 18

List of Figures
Figure 1: BeSt: Overview ... 7

Figure 2: Interface to the Modus data lake implemented in InGrid (status on February 25, 2022) 9

Figure 3: The output files after preprocessing UK Rail Delivery Group data .. 17

Figure 4: Example of visualization of a) Private vehicle transport, b) Public transport to Charles de

Gaulle airport (CDG) in Paris region .. 22

https://www.sesarju.eu/

D2.2 DATABASE STRUCTURE

Page 5

1 Introduction

This deliverable complements the Data Management Plan (DMP) of the Modus project by describing

in more detail the infrastructure used to implement the Modus data lake (used for storing the data in

Modus and sharing the data between the partners of the project), the structure of the data lake

implemented and the data management and preprocessing techniques applied to the data so that it

can be "model-ready".

We describe the cleaning and preparing (and sometimes acquiring) techniques that were performed

so far in order to get the data ready for the technical activities in subsequent work packages (3-5). All

of the data we work with in Modus are structured data, for which purpose tabular format is used. A

data infrastructure relying on the BeSt platform, as described in the Modus Data Management Plan [1]

has been set up for all the data needs of the project, and required accessibility was provided to the

members of the consortium. Therefore, the data are organised in a structured called data

lake provided by the BeSt platform by Databeacon (a spin-off company of Innaxis), and it is protected

using password-encrypted access. The reader can find more details on the infrastructure used to

implement the data lake in Section 2 of this deliverable.

The processing and transforming of the data so far have been performed using the languages Python

and to lesser extent SQL.

Since it has been decided that the original DMP will be updated twice during the project (the first

update was provided halfway through the project, and the second will be delivered at the end of the

project), the final version of the DMP will include a full overview of the data sources used in Modus as

well as the output data produced by the project. At the time of writing this deliverable, there are still

a lot of activities being performed on the datasets, and therefore this deliverable only captures the

current status of the performed data management techniques which can still change until the end of

the project. All those changes will be captured in the final update of the DMP.

https://www.sesarju.eu/

D2.2 DATABASE STRUCTURE

Page 6

2 Database: Modus data lake

Modus operates using the artificial intelligence/data storage and processing platform BeSt operated

by DataBeacon. BeSt stands for "Beacon Stack". BeSt is a scalable, secure, on-demand multi-side

computing and data storage platform that allows fast deployment of AI applications in aviation as it

securely fuses datasets and runs computations over private, confidential data that are isolated from

the rest of the platform.

To ensure confidentiality, privacy and non-disclosure of the data, data owners and consortium

members will follow BeSt's global governance model, the model consist on a data protection

agreement (DPA) with general terms and a series of annexes describing particular usages of such data,

e.g., scenarios. More specifically, the platform maintains the confidentiality of any information that

may, in any manner, violate the commercial secrecy of any particular data owner before any use by

the consortium, leaving only such data necessary for the analyses and modelling.

2.1 BeSt: Technical description

BeSt (Beacon Stack) is a multi-sided platform (MSP) for artificial intelligence (AI) applications

specifically designed for the aviation domain. In a MSP participants are usually both data providers

and consumers of data analysis services. Participants interact through the MSP using secure common

exploitation of data to improve their performance among various aspects of their business. This

interactions are funded over an open, collaborative IT infrastructure that operates under a global

governance model. The goal is to consummate matches among users and facilitate the exchange of

data and applications, thereby enabling value creation for all participants.

Figure 1 below shows the overall structure of the platform BeSt and how the different blocks connect

and interplay. BeSt uses a data de-coupling architecture, which means a data 'broker' sits in between

data sources and data analysts. No analyst can directly access the data and only the data broker has

access to the data repositories. This adds an additional layer of security. In any data leak, the amount

of data leaked will be limited and mitigated as previously de-identified by the SDF (Secure Data Fusion).

To learn more about how privacy and security are handled in BeSt, refer to Section 6 on data security.

The analysts work in the block "App / Analytics Environment" (see Figure 1), where Jupyter notebooks

are available for performing various analytical tasks over datasets stored in the cloud in an elegant and

relatively simple way, relying on the most common programming languages and libraries used in Data

Science. The admin functions of de-coding, formatting and de-identification enable data preprocessing

that can ensure that the data privacy is respected, giving at the output the data that the analyst can

work with without compromising data privacy.

https://www.sesarju.eu/

D2.2 DATABASE STRUCTURE

Page 7

Figure 1: BeSt: Overview

In Modus we have implemented a data lake which we use as a data storage repository (called Modus

data lake from now in). Unlike more traditional data storing solutions, a data lake is a centralised

repository that allows you to store all your structured and unstructured data in its natural/raw format

(usually object blobs or files), at any scale. Compared to a hierarchical data warehouse, which stores

data in files or folders, a data lake uses a flat architecture and object storage to store the data. This

way, through leveraging inexpensive object storage and open formats, data lakes make it easier to

retrieve data across regions, improve performance and take greater advantage of the data. Data lakes

arose as a response to the limitations of data warehouses and data marts, such as information siloing.

A data lake has a number of advantages over more traditional data storages:

Growing data volume. A data lake can help to adapt easily to a growing volume of data, as storage is

elastic rather than pre-allocated and the capacity scales with need. The cost of using a data lake is a

function of usage, so the users do not pay more than what they actually utilise.

Data variety. Data lakes are designed to naturally handle various data sets and formats, i.e. they are

agnostic to data format and one can co-locate any type of data in the same data lake. That way, we

can progressively refine data without changing the platform itself and access the data in a uniform way

across the lake. Since the Modus data lake is the storage of all the data that is used, it is always up to

date and contains any new data sets acquired or updated.

Self-service tools. Data lakes enable users to use different tools and languages to perform different

analytics tasks all at once.

Data velocity. We can store data to a data lake without having to define its structure, which means we

can store data of any size and even valid and invalid data. This is very flexible if one wishes to perform

any type of post-processing, and thus data lakes naturally adapt well to handling high velocity of

generating and migrating data that is a common aspect of big data. This is a great advantage for the

Modus project as it allows partners to store their data ad-hoc as their data needs arise, with no need

to plan ahead the structure of the repository or to satisfy a particular format.

Centralised data catalogue. A data lake that is centralised eliminates problems with data silos (like

data duplication, multiple security policies and difficulty with collaboration), offering downstream

users a single place to look for all sources of data.

https://www.sesarju.eu/

D2.2 DATABASE STRUCTURE

Page 8

Due to the fact that research data is usually varies, a data lake lends itself naturally to the data needs

of a research project such as Modus. In Modus, we rely on Amazon Web Services (AWS) to build our

data lake and to do that we will follow a standard procedure to creating a data lake in Amazon S3 (you

can see some examples of open data lakes on the following link: https://registry.opendata.aws/):

1 Set up an Amazon S3 storage. In our case, we create an S3 repository in BeSt by Databeacon

'databeacon-modus'.

2 Move the data collected to the created data lake. This process is repeated as newly acquired

data for the project needs to be ingested in the data lake.

3 Cleanse, prepare and catalogue stored data. As raw data is ingested, it needs to be cleaned and

prepared for usage in predictive modelling and analytics. Such clean data sets are then moved to

other folders in the data lake, designed to store pre-processed data. The architecture and all

changes to the data sets need to be reflected in the documentation, which we maintain up to

date in InGrid.

4 Configure and enforce security mechanisms to protect confidential data, if and as needed. This

is a very straightforward and easy process enabled by the already provided mechanisms in AWS.

2.1.1 Data interfaces

In BeSt, there are several interfaces available for accessing data: Data Catalogue (AWS Glue), Athena

intended principally for relational databases and users familiar with SQL queries, and data lakes

intended to work with non-relational databases (AWS data wrangler, parquet and partitioning).

However, in order to facilitate the data storage and sharing between the consortium to the fullest, we

rely on the simple and elegant implementation of the interface in our collaborative platform InGrid,

that allows everyone with access to upload and download various types of files. We implemented this

visual user interface (UI) that is integrated and accessible from a protected InGrid page and allows easy

upload and download of the data to/from the underlying data lake without the need to directly access

the storage in BeSt, i.e. simply using the provided UI. On Figure 2 below the reader can see what the

interface looks like (the state is captured on February 25, 2022).

As one can observe, the interface resembles a simple file storage system as one can find on Windows

or MacOS, with which every computer user nowadays is familiar. That makes it extremely simple to

use and navigate. Nevertheless, the maximum file size allowed to be uploaded via this interface is

50Mb, which is set for in order to prevent abuse. Therefore, in case of larger files, one should either

partition it into smaller units or upload the file directly in the BeSt storage implemented in S3 AWS.

Since Innaxis is managing the data lake, their data engineers and analysts who have access to the BeSt

platform can easily execute those uploads at the request of any member from the Modus team.

https://www.sesarju.eu/
https://registry.opendata.aws/

D2.2 DATABASE STRUCTURE

Page 9

Figure 2: Interface to the Modus data lake implemented in InGrid (status on February 25, 2022)

https://www.sesarju.eu/

D2.2 DATABASE STRUCTURE

Page 10

3 Data Sources

3.1 Overview of data sources

Table 1 provides an overview of the data sources collected so far in Modus, indicating whether or not

they are confidential.

While new data sources might still be acquired, once a data set is acquired, Modus does not plan to

update it during the project execution, due to the fact that all the data are collected for a certain

historical time period and geographical scope according to the defined case studies. The case studies

in Modus have been defined, and thus the data are acquired, from chosen data providers, in line with

the defined time period and geographical scope. Nonetheless, no changes to the collected datasets

are foreseen at this point.

Produced data sets on the other hand are subject to change (e.g. new results obtained upon improving

some model). Those changes will be adequately tracked through the standard processes of data

versioning. When Modus produces new versions of some files, it will record what changes are being

made to the files and give the new files a unique name, commonly by appending a version number to

the end of the file (e.g. new simulation results produced by updating the model version form "v2.0" to

"v2.1"). For all the software and data version control needs, Modus relies on:

 the data storage platform BeSt, where the Modus data lake is implemented (see Section 2)

and all shareable data sources are ingested, and

 a distributed version control system git (using git repositories on GitHub).

Table 1: Data Sources in Modus

Data

source

(provide

r)

Description of the

data source

Purpose in

Modus
WPs

Time

resolution (if

applicable);

geographical

scope

Status

Open Data

status (PU -

public, CO -

confidential)

1 Official

Airline

Guide

(OAG)

The OAG data is available

for each year. The dataset

contains planned global

flight schedules, such as

departure and arrival

times, ASKs, carrier name,

and type of service. The

schedule contains also

cargo aviation services.

OAG data shows also

the utilisation of airports.

More information

available at

https://www.oag.com/.

Modal choice

modelling, door

to door models.

It's not shared

between the

consortium

members due

to

confidentiality

restrictions,

available only to

ENAC.

WP3,

WP4

Monthly or daily

data (2018,

2016, 2014,

2012, 2010,

2008 etc.);

world

acquired CO

https://www.sesarju.eu/
https://www.oag.com/

D2.2 DATABASE STRUCTURE

Page 11

2 Air

transport

data

database

(FRACS)

The Air Transport

Database is owned

by FRACS (France Aviation

Civile Services) funded by

the French Civil aviation

(DGAC) and ENAC.

It contains data on airline

companies, airports and

traffic between countries

and cities.

Air traffic

network

models. It's not

shared between

the consortium

members due

to

confidentiality

restrictions,

available only to

ENAC.

WP3,

WP4

Yearly; world acquired CO

3 MERITS MERITS (Multiple East-

West Railways Integrated

Timetable Storage) is a

database, owned by UIC,

containing the integrated

timetable data of many

European and some non-

European countries

(Russia, Turkey, Belarus),

comprising a few hundred

railway

undertakings (RUs), which

are published twice a

week.

Modal choice

modelling, door

to door models

WP3,

WP4

2016, 2017,

2019; Europe

acquired CO

4 UK DfT

data

(UkGov)

The data published

annually by the

UK's Department for

Transport on rail

passenger numbers,

crowding and capacity

through a series of tables

('RAI02').

Modal choice

modelling, door

to door models

WP3,

WP4

Yearly; UK only acquired PU

5 SKY

synthetic

data

Synthetic dataset

representing hypothetical

routes e.g. in intermodal

connections, last-mile

mobility, or long-distance

road, rail and air routes,

under specific geographic

constraints.

Route and route

cost modelling

WP3,

WP4

N/A, any

geographical

region within

EU

Generated

using

Skymantics

Routing

Engine

PU

6 SNCF Statistics on the French

national rail operator.

Provides information

about average time per

line, different levels of

delay, number of train

anticipated, number of

canceled trains, loss leader

price per O-D according to

the class, etc.

Modal choice

modelling

WP3 Monthly,

France-Europe

(domestic and

international

services)

acquired PU

https://www.sesarju.eu/

D2.2 DATABASE STRUCTURE

Page 12

7 Mercury

database

The data that defined the

operational environment

in which the simulations

run by the Mercury

simulator are performed.

Gate-to-gate

modelling of air

traffic. It's not

shared between

the consortium

members due

to

confidentiality

restrictions,

available to

UoW.

WP4 A full day of

operations,

ECAC

acquired,

part of

Mercury

CO

8 Eurostat The data contains various

socio-economic variables.

Modal choice

modelling

WP3 2009-2019,

Europe

acquired PU

9 UK Rail

Delivery

Group

UK train fares data. Modal choice

modelling

WP3 2016-

September

2021, UK

acquired PU

10 Renfe fare

data

Spain train fares data. Modal choice

modelling

WP3 April 2019 -

December 2020,

Spain

acquired PU

11 Deutsche

Bahn

Germany train fares data. Modal choice

modelling

WP3 2020-2021,

Germany

acquired CO

Detailed description of all the data sets listed in the Table 1 as well as the data produced by Modus

(output data sets), can be found in the Modus Data Management Plan (DMP) and its respective

updates.

https://www.sesarju.eu/

D2.2 DATABASE STRUCTURE

Page 13

4 Data management techniques

This sections details the data management and preprocessing techniques applied to various datasets

used in Modus.

4.1 MERITS: preprocessing

MERITS, the Multiple European Railway Integrated Timetable Storage, is a database owned by UIC

(International Union of Railways) containing the integrated timetable data of many European and

some non-European countries (Russia, Turkey, Belarus). It comprises a few hundred railway

undertakings (RUs) which are published twice a week. It is designed so that is capable to exchange

timetable data in a unique format (EDIFACT).

The MERITS database collects and integrates European railway timetable data and provides all DSU

with access to its contents. The format it relies on, EDIFACT, is a message oriented data format,

standard for data exchange that relies on two different message types: one for the transfer of

"schedule data" which (in general) are train data (SKDUPD), and another for the transfer of "static

data" which are location data (TSDUPD). EDIFACT is the single format used for importing and exporting

the data (SKDUPD and TSDUPD messages).

This data format is not suitable for the analysis purposes in Modus, therefore the data had to be

preprocessed (transformed into a CSV format and cleaned) so that it could be used for analysis and

modelling purposes in Modus. The data in the EDIFACT format was parsed relying on the parser

provided by UIC (code property of UIC, shared with Modus team for the purposes of the project -

limited usage) which extracts the meaningful parameters from MERITS and delivers them in a tabular

format (CSV). The process and the output obtained is described below.

4.1.1 MERITS data parser

The MERITS data parser and converter was provided by UIC, a partner in the Modus projects, and with

their permission it has been used to extract meaningful data fields from EDIFACT messages in Merits

and store them as CSV files. The code is written in Python and takes as input MERITS SKDUPD files

(TRAIN, ODI, POR and RELATION files) and outputs the information contained in those files to CSV files,

which can then be easily read and analysed by common data analytics techniques.

The data conversion was done on all of the acquired data in Modus, covering years (fully or partially)

2016, 2017 and 2019. The converted data in CSV files has been stored in Modus data lake.

In continuation we present the variables that can be found in three different SKDUPD files in MERITS:

ODI, POR and TRAIN. Upon consultation with the data owner UIC, it was decided that the data

contained in the RELATION files is not relevant for Modus and thus it was not processed.

4.1.2 MERITS: tabular output

In this section we present the list of all the parameters extracted from MERITS, partitioned by file type:

ODI, POR and TRAIN. For the full description of the data fields, please take a look at the technical

manual of MERITS (MERITS-guide).

https://www.sesarju.eu/
https://research.innaxis.org/display/ATMODAL/4_+Data+management+techniques

D2.2 DATABASE STRUCTURE

Page 14

Table 2: SKDUPD_ODI

Variable Description

ID ID of the train. It is reset for each year.

start Stop from which the characteristics apply

end Stop at which the characteristics cease to apply

value Not relevant for Modus

reservation Not relevant for Modus

equipment Not relevant for Modus

tariff Fare information

Table 3. SKDUPD_POR

Variable Description

ID ID of the train. It is reset for each year.

pos The position of the stop: first, second, third, etc.

UIC UIC code of the stop

arrival Arrival time

offsetA Indicates if it is past midnight

departure Departure time

offsetD Indicates if it is past midnight

quay1 Arrival dock

quay2 Departure dock

detail Not relevant for Modus

boarding Not relevant for Modus

message Not relevant for Modus

load Not relevant for Modus

unload Not relevant for Modus

Table 4: SKDUPD_TRAIN

Variable Description

ID ID of the train. It is reset for each year.

service_number Train service number

service_characteristic Reservation type

pricing_category Product characteristics identification code

https://www.sesarju.eu/

D2.2 DATABASE STRUCTURE

Page 15

service_mode Mode of service: rail, road, etc. Examples: 'ICE INTERNATIONAL', 'SOUTHSIDE-EXPRESS'

service_name Name of the service

service_provider Provider of the service. Examples: SNCF, SNCB, DB, etc.

information_provider Empty for all data observations. We can discard this parameter.

reservation_company Not relevant for Modus

beginning_date Timestamp of the first date of circulation

end_date Timestamp of the last date of circulation

circulation_days String containing a digit for each day between beginning date and end date. The

corresponding digit is 1 if the train circulated that day and 0 if it didn't.

RFR_number Not relevant for Modus.

4.1.3 MERITS for the landside model

The data provided by MERITS is of use for the landside part of the Mercury model. As the airside of

Mercury will run on the data from one day in September 2018, we analyse two full days of rail traffic,

as provided in MERITS, from September 2017 and 2019:

 September 2017, 15 → 266,891 rail services.

 September 2019, 6 → 510,152 services.

In order to prepare the data for the use in the landside model, we filter the relevant data from the

cleaned MERITS dataset and join all the parameters we deem useful for this model into one dataset of

tabular format, stored in the data lake. Final produced CSV files, with all the extracted parameters as

listed in Table 5 below, can be found under the following paths in the data lake:

 September 2017: merits/merits-for-rail-model/merits_final_rail_model_sep17.csv

 September 2019: merits/merits-for-rail-model/merits_final_rail_model_sep19.csv

Table 5: Metadata of the Merits data subset produced for the landside model

Variable name Source in

MERITS

Description Data

example

service_name SKDUPD_TRAIN Type of train 'ICE

International'

pricing_characteristic SKDUPD_TRAIN Pricing category 1

service_provider SKDUPD_TRAIN Provider of the service X113

beginning_date SKDUPD_TRAIN porFirst day of circulation 2017-07-08

end_date SKDUPD_TRAIN Last day of circulation 2017-07-28

https://www.sesarju.eu/

D2.2 DATABASE STRUCTURE

Page 16

circulation_days SKDUPD_TRAIN String representing the days of circulation 1000000100000

010000001

id SKDUPD_POR Unique identifier of the service Primary key

pos SKDUPD_POR The position of the stop: first, second, third... 1

UIC SKDUPD_POR UIC code of the stop. 008759400

arrival SKDUPD_POR Time of the arrival to the station 08:01:00

offsetA SKDUPD_POR Flag to know if the train arrived after midnight 1

departure SKDUPD_POR Time of the departure to the station 16:38:00

offsetD SKDUPD_POR Flag to know if the train left after midnight 1

value SKDUPD_ODI N/A This is NaN in

most cases, to

be ignored.

equipment SKDUPD_ODI Equipment used 91

tariff SKDUPD_ODI Tariff information NaN

4.2 UK Rail Delivery Group: data preprocessing

The Rail Delivery Group (RDG) brings together the companies that run Britain’s railway into a single
team. All the passenger and freight rail companies are members of the RDG, as well as Network Rail

and HS2. The data obtained from the RDG contain information on train fares. Each year in the UK, train

fares can be subject to revision in January, May and September, with the main revision taking place in

January each year and the May and September revisions being available to make seasonal alterations

to fares. The fare data download available on the RDG website is released three times a year in January,

May and September. These three releases are known as ‘full releases’ of fares data and are made
available free of charge under the terms of a Creative Commons licence. The data containing fares

information are extracted from the Data Transformation and Distribution Service (DTD).

4.2.1 Raw data format and preprocessing

Data feeds are delivered in fixed format flat text files. Some files contain several record types. The

downloaded data set contains 24 export files typed defined for the Fares feed, out of which Modus

has selected several of them that contained information relevant for the project. The following files

(fixed format text files) have been selected for their use in Modus, and in each of those files one line

contains a record. Some files have several record types.

These files had to be preprocessed so to extract the fields of interest. The extracted variables were

organised in a tabular format and stored as CSV files in the Modus data lake, under "rail-delivery-

group/processed" (see the screenshot of the data lake on Figure 3). The data covers UK train routes

from 2016 onwards.

https://www.sesarju.eu/
https://research.innaxis.org/display/ATMODAL/4.2+UK+Rail+Delivery+Group%3A+data+preprocessing

D2.2 DATABASE STRUCTURE

Page 17

Since the parameters are stored in a fixed format, the preprocessing is fairly straightforward and

consists of:

 identifying the variables of interest according to the Rail Delivery Group technical manual

(RDG-manual) and their location in the record

 parsing the records to extract the identified variables

Figure 3: The output files after preprocessing UK Rail Delivery Group data

Each text file has a fixed header and terminator which need to be removed before parsing the data,

i.e. the file consists of three parts:

 informational header - lines start with '/'

 ordered sequence of records - what we are interested in

 terminator - lines start with '/'

The header and the terminator look as follows:

Header:

/!! Start of file

/!! Content type: type (as in table above)

/!! Sequence: nnn

/!! Records: nnnnnnn

/!! Generated: dd/mm/yyyy

/!! Exporter: DTD

_module version

Terminator:

/!! End of file (dd/mm/yyyy)

https://www.sesarju.eu/

D2.2 DATABASE STRUCTURE

Page 18

4.2.2 UK Rail Delivery Group: output of preprocessing

After the preprocessing stage, the files shown on Figure 3 were obtained. Their description is

summarised in Table 6.

Table 6: Description of the output files containing data extracted from UK RDG

File name
Description of

the content

Raw record

type from

which the data

was extracted

Extracted parameters

df_fare.csv Point to point

adult fares in a

clustered format

FLOW record flow-id: Uniquely identifies the flow to which

the fare pertains

ticket-code: 3-character ticket code for the fare

fare: Fare in pence

restriction-code: restriction code associated

with this fare

df_flow.csv Point to point

flows in the

network.

FLOW record flow-id: Uniquely identifies the flow to which

the fare pertains

origin-code: A code representing the flow origin

(4 digit NLC code, county code, zone code). This

may be a cluster NLC, in which case this flow

applies to all stations in the cluster. Where

DIRECTION = ‘R’ then this flow may also be
used for fares in the reverse direction, in which

case ORIGIN-CODE should be used as

DESTINATION-CODE in the reverse direction

destination-code: A code representing the flow

destination (4 digit NLC code or county code).

This may be a cluster NLC, in which case this

flow applies to all stations in the cluster. Where

DIRECTION = ‘R’ then this flow may also be
used for fares in the reverse direction, in which

case DESTINATION-CODE should be used as

ORIGIN - CODE in the reverse direction

route-code: Route code

direction: S - fare applies in a single direction; R

- fare applies in both directions (it is reversible

end-date: Last date for which this record can be

used. Format is ddmmyyyy. A high date

(31122999) is used to indicate records which

have no defined end date

start-date: First date for which this record can

be used. Format is ddmmyyyy

toc: The Fare TOC code of the TOC setting the

fares on the flow

https://www.sesarju.eu/

D2.2 DATABASE STRUCTURE

Page 19

df_station_clusters.csv Lists the station

clusters, and the

locations included

in each of the

clusters

Station clusters

record: FSC file

type

cluster-id: 4-character alphanumeric NLC code

at which the cluster fares are set

cluster-nlc: NLC code of a location which is a

member of the cluster (it may also be a zone

code or a county code). The fares for this

location may be set using the Cluster NLC

instead of this NLC. A member may exist in

several clusters

end-date: Last date for which this record can be

used. Format is ddmmyyyy. A high date

(31122999) is used to indicate records which

have no defined end date

start-date: First date for which this record can

be used. Format is ddmmyyyy.

df_ticket_types.csv Ticket codes, their

type, class and

other ticketing

information

Ticket types

record: TTY file

type

tkt-code: alphanumeric ticket code

end-date: Last date for which this record can be

used. Format is ddmmyyyy. A high date

(31122999) is used to indicate records which

have no defined end date

start-date: First date for which this record can

be used. Format is ddmmyyyy

quote-date: First date for which this record can

be queried. Format is ddmmyyyy

tkt-description: Ticket description

tkt-class: Ticket class, currently '1', '2' or '9'

tkt-type: Ticket type, single ('S'), return ('R'), or

season ('N')

tkt-group: Ticket group. First, Standard,

Promotion or Euro: 'F', 'S', 'P', 'E'

max-pax: Defines the maximum number of

passengers who can travel on this ticket

min-pax: Defines the minimum number of

passengers who can travel on this ticket.

df_locations.csv Locations,

including group

locations

Locations record:

LOC file type

uic-code: a unique code which identifies this

location

end-date: Last date for which this record can be

used. Format is ddmmyyyy. A high date

(31122999) is used to indicate records which

have no defined end date

start-date: Earliest date for which this record

can be used. Format is ddmmyyyy. A high date

(31122999) is used to indicate records which

have no defined end date

nlc-code: National location code, for British

locations only. No value is output in this field

for non-GB locations

description: location description

https://www.sesarju.eu/

D2.2 DATABASE STRUCTURE

Page 20

county: Used to decide if a location is in

Scotland, England & Wales or elsewhere.

County codes on the mainland are all numeric

values. Other values are ‘NI’ (Northern Ireland),
‘IR’ (Ireland), ‘CI’ (Channel Islands)
assoc-uic-code: UIC Code of associated station

df_toc.csv TOC codes and

descriptions

TOC record: TOC

file type

toc-id: TOC identifier. Used in CIF to identify the

trains of a particular TOC

toc-name: TOC name

active-indicator: indicates whether there is an

active entry: 'Y' or 'N'

df_toc_fares.csv TOC codes and

fares

Fare TOC record:

TOC file type

toc-id: TOC identifier. Used in CIF to identify the

trains of a particular TOC

fare-toc-id: TOC identifier. Used in Flow file to

identify which TOC is responsible for the fares

on this flow

fare-toc-name: TOC name.

flow_fares.csv Obtained by

merging: df_flow,

df_fare,

df_ticket_types,

df_toc,

df_toc_fares,

df_locations; i.e.

everything excect

df_station_clusters

N/A

4.3 Synthetic data generation: city archetypes

Cities are spaces containing hubs of more than one transportation mode. Models developed in WP4

account for long-distance air and rail travel between European cities. In addition, to have a complete

view of the end-to-end journey, it is necessary to also account for passenger connectivity within the

city, both as last-mile (airport to home/office, home/office to airport) and intermodal changes (airport-

rail, rail-airport). The time taken when changing transport modes gives information of the frictions

created at the local level, and allows to compare performance of modal choices.

Synthetic datasets have been generated using Skymantics routing engine to simulate the

fastest/shortest routes between airports and other locations in an urban environment. These locations

include railway stations and city centres, but also any other point in the city and surrounding region

that is relevant as an origin or destination of travel. The resulting datasets represent catchment areas

for required travel time, defined concentrically around city airports of different configurations.

4.3.1 Data generation method

The routing engine supports the calculation of route metrics between pairs of locations in a map.

Routes are calculated as optimal results of routing algorithms following constraints defined in time and

space (e.g. roads, schedules). Catchment areas are generated as collections of generated routes

https://www.sesarju.eu/
https://research.innaxis.org/display/ATMODAL/4.4+Synthetic+data+generation%3A+city+archetypes

D2.2 DATABASE STRUCTURE

Page 21

terminating at the location of choice. The data set for Modus has been generated to represent the

catchment area to the city airport of choice based on shortest time metric. For cities with multiple

airports, catchment areas are generated for each airport separately.

Per airport, two separate catchment area layers are generated representing different modal choices

and making use of different datasets:

Private vehicle (incl. taxi or ride-sharing) routes use Open Street Map (Geofabrik download

- https://download.geofabrik.de/). Open Street Map is an open data project supported by a global

community which contains global data about roads, classification of roads, and features in maps.

Geofabrik has data extracts from Open Street Map which are updated daily. Road grids in the bounding

box of the selected region are selected for the route calculations. Open Street Map data is free,

complete, and fairly accurate. It provides information on traffic elements (lights, stop signals,

crossings) and some speed limit information. Those roads without speed limit information have been

inferred as a stochastic model based on neighbours and proximity. Although Open Street Map does

not provide information on real traffic speed, estimations have been based on street/road hierarchy,

speed limit and traffic elements.

Public transit routes use combinations of walking plus public transportation network present in the

city (bus, metro, or short-distance rail). Walking routes are extracted from Open Street Map Geofabrik.

Public transportation is consumed from local, regional or national GTFS open data projects maintained

by the corresponding governments:

 Madrid (airport MAD): https://data-crtm.opendata.arcgis.com/

 Paris/Ile de France (airports CDG, ORY, BVA): https://data.iledefrance-

mobilites.fr/ https://transport.data.gouv.fr/datasets/ Transport networks of the regions Ile

de France , Hauts-de-France (Aisne, Oise, Somme), Bourgogne, Normandy, Grand-Est,

Centre-Val de Loire. It includes shuttle service from Paris - Porte Maillot to Beauvais

(https://www.aeroportparisbeauvais.com).

 Stockholm/Sweden (airport ARN): https://www.trafiklab.se/api/trafiklab-apis/gtfs-sverige-2/

 Brussels/Benelux (airports BRU,

CRL): https://hello.irail.be/gtfs/ https://transport.data.gouv.fr/datasets/ https://data.public.

lu/ https://gtfs.dehttps://gtfs.ovapi.nl/ Transport networks of the regions Brussels, Wallonie,

Flanders, Nord and Grandest (France), Luxembourg, the Netherlands and Germany. It

includes shuttle service from Charleroi airport to a series of cities in the region

(https://www.flibco.com)

GTFS data contains stations and accesses, stop, routes, timetables and frequencies, although not all

sources offer the same type of information or level of accuracy. For each public transport dataset, the

routing engine has been adapted to build a grid of connected stations, including stops and applying

time costs between them. Accesses to pedestrian traffic have been added to allow for the transfer

among stations, stops or transport means. In addition, waiting times have been generated at stops

based on average frequencies between 6am and midnight during labour days.

For the case of public transit routes to CRL, two catchment area maps have been generated in order

to assess the effects of creating a route network of shuttle service to improve an airport's accessibility.

https://www.sesarju.eu/
https://download.geofabrik.de/
https://data-crtm.opendata.arcgis.com/
https://data.iledefrance-mobilites.fr/
https://data.iledefrance-mobilites.fr/
https://transport.data.gouv.fr/datasets/
https://www.aeroportparisbeauvais.com/
https://www.trafiklab.se/api/trafiklab-apis/gtfs-sverige-2/
https://hello.irail.be/gtfs/
https://transport.data.gouv.fr/datasets/
https://data.public.lu/
https://data.public.lu/
https://gtfs.de/
https://gtfs.de/
https://www.flibco.com/

D2.2 DATABASE STRUCTURE

Page 22

4.3.2 Output data

The synthetic datasets are generated in GeoJSON format with the following data structure:

{

"type": "FeatureCollection",

"name",
Name of the catchment area (e.g. "ARN catchment area with public

transportation")

"features": [Array of overlaid polygons

 "id",

 "type": "Feature", Each polygon defined as a feature

 "geometry": {

 "type":"MultiPolygon",

 "coordinates": [lon, lat] }, Collection of polygon points and coordinates

 "properties": {

 "area-type": 1,

 "description", Describes the polygon (e.g. "10-minutes boundary")

 "stroke", "stroke-width",

 "stroke-opacity", "fill", "fill-

opacity"

For visualization

 }

]

}

Figure 4: Example of visualization of a) Private vehicle transport,

 b) Public transport to Charles de Gaulle airport (CDG) in Paris region

https://www.sesarju.eu/

D2.2 DATABASE STRUCTURE

Page 23

4.3.3 Data usage

The catchment areas are used to generate some of the time distributions in the door-to-door model.

They are the base of the door-to-kerb and kerb-to-door stages, which represent the route from the

home address to the departure airport and from the arrival airport to the final destination.

In order to generate these distributions, the catchment areas are exploited through a spatial sampling

method. This technique allows to estimate the time used by a set of passengers with different home

addresses within the airport's catchment area to reach the airport.

Once this is done for a set of model airports, the results can be extrapolated to the set of airports with the

same archetype as the ones processed with the data. This hypothesis allows to simplify the computations,

since only a set of template airports have to be studied in detail to obtain the catchment areas.

4.4 Renfe Spain data: preprocessing and acquisition

The Renfe fare data was collected on Kaggle and concerns the period between 12/04/2019 and

05/12/2020. Kaggle (available at: https://www.kaggle.com/) is a platform for machine learning

practitioners to share their work and compete in various machine learning challenges, and often one

can find many data sets freely available, such as was the case with this dataset.

The original downloaded data set is very large with a volume of about 8GB. This is due to the method

of automated data collection in which data samples were ingested repeatedly at regular and very fine

intervals. It was therefore essential to preprocess the data in order to clean it and keep only the

information that we will use later in the modelling phase.

The preprocessing of the Renfe data set was carried out in two stages, with an additional overhead step

before in which we split the dataset into ten partitions in order to be able to read such a large database.

Dividing the parent dataset into subsets helped us overcome the difficulty of reading all of the data at once.

Once this was done, the first step in the preprocessing was to remove the duplicates contained in the

dataset. We defined a duplicate is a row in the dataset that is completely identical to another row in

the dataset. The method of data collection described above in which data samples were ingested with

a very high frequency resulted in a large number of duplicates in the dataset. Once this step was

completed, we continued the data cleaning by deleting the variables not necessary for our study, such

as the date and time of collection, ID, the number of seats available as this was a variable with 97%

missing data, or travel company as it was composed of a single mention (Renfe).

All the adjustments described above are applied to all ten data subsets in the same way. Once the

whole process was completed, the cleaned version of those subsets were once again merged into a

single dataset. The final dataset contains following variables:

 Origin;

 Destination;

 Departure;

 Arrival;

 Duration;

 Vehicle_type;

 Vehicle_class;

 Price.

https://www.sesarju.eu/
https://www.kaggle.com/

D2.2 DATABASE STRUCTURE

Page 24

4.5 Modal choice model: data preparation

The data acquisition phase was followed by an important preparation phase of the acquired datasets.

This was particularly long and complex due to the large volume of data acquired on the one hand, and

the significant differences between air and rail transport on the other. We therefore had to harmonise

the structures of the different databases, particularly OAG and MERITS, so that they all adopted the

same structure.

For those purposes, we chose to adopt the structure proposed by the OAG database, i.e., a line is equal

to an origin-destination (OD), an operator, a date, a departure, and arrival time and all the associated

available characteristics. Having made this choice to have the OAG data schema as the referent one,

the next logical step was to transform the MERITS data so that it fits the desired data schema.

4.5.1 Transformation of MERITS data to fit the modal choice model data

scheme

Initially, MERITS had a completely different structure with aggregated information. Moreover, the

MERITS database is originally composed of three sub-databases, each with a readable ID. The different

information about a train1 is divided into three separate databases. The first sub-base is called

"SKDUPD_TRAIN" and contains information on the provider, the type of equipment used, the date, day

of departure and the train number. The second sub-base, named "SKDUPD_POR", contains

information on the route such as intermediate stops. This second sub-base is completed by the third

sub-base 'SKDUPD_ODI' which provides information on the station from which all characteristics of the

two previous bases apply and the station at which these characteristics end. In addition to this

information, this last sub-base specifies the presence of additional services such as the presence of a

dining car.

The other particularity of the MERITS database is that one row of data does not correspond to one

concrete rail trip, but to a set of train services sharing the same characteristics except for the date of

travel. As a result, we had to perform a lot of restructuring and disaggregation work to obtain a data

schema as the one of the OAG data. Subsequently, we merged the data from the three sub-databases

into a single dataset containing the information and characteristics of each train. Although the

structure of the databases obtained after preprocessing is identical between OAG and MERITS, in the

next step we had to work on the differences related to the terminology and codes used by each mode.

Concretely, air and rail transport are two different transport modes and as such use a language and

codification specific to their world. In the case of rail, stations are coded with a 7-digit "UIC" code. In

the case of air transport, airports use a three letters "IATA" code. In order to adopt a common language

and to group stations and airports in the same geographical area, we have adopted the language and

coding used by Eurostat, i.e., NUTS2. Beforehand, this required the creation of a table allowing the

correspondence between the UIC/IATA-NUTS codes. These correspondence tables are essential for

correctly joining the data between the OAG and MERITS databases. In other words, NUTS codes

becomes the common denominator of the databases, i.e. the key that can be used to join data

examples from the two databases.

https://www.sesarju.eu/

D2.2 DATABASE STRUCTURE

Page 25

4.5.2 Preprocessing fare data

With respect to processing fare data, the format of those differed depending on the country. Some

countries, such as France where the data came directly from an SNCF document referencing all

passenger fares by OD and class and Spain where we obtained the data via a massive and automated

collection available in open data on Kaggle, did not require much pre-processing of the data as it was

already provided grouped by OD pairs and travel class. In contrast, in the case of Germany, we had

prices per kilometre and per class provided by Professorship of Travel Behavior (Dr. Moeckel) at the

Technical University of Munich, so we simply calculated the price for each DO and class via the

distances.

For more details on the sources of these data, please refer to the section "Data sources" in Modus

Data Management Plan [1].

1A train equals, an origin-destination, an operator, a date, a departure and arrival time and a rolling

stock.

2The classification of territorial units for statistics, abbreviated NUTS (from the French version

Nomenclature des Unités territoriales statistiques) is a geographical classification subdividing the

economic territory of the European Union (EU) into regions at three different levels.

https://www.sesarju.eu/

D2.2 DATABASE STRUCTURE

Page 26

5 Final remarks

This deliverable describes the structure of the data lake implemented for storing and sharing data in

Modus, as it was on April 2022. Moreover, it describes the data processing activities that were

performed so far in the project.

The data preprocessing tasks in Modus are done with the primary goal of cleaning and preparing the

data for the model development (part of WP4) and simulation and analysis (part of WP5), as in most

cases the raw data (data as received and ingested) is not directly suitable to be fed to models. Normally

substantial efforts need to be invested to transform the data from its raw format to one that can be

utilised in modelling and analysis with high certainty that the data used are accurate and reliable. For

those purposes, we performed the tasks of data cleaning, transformation, correction of erroneous data

points, outlier removal, and similar, described in this deliverable.

As the data processing and modelling are still ongoing activities in Modus, we can expect further data

processing tasks to be performed in the following months, as well as some possible minor changes to

the data lake structure. Those will be reported in the subsequent deliverables, such as the final version

of the Data Management Plan (to be delivered) at the end of the project and the deliverables on

modelling and analysis that will describe in details how the data are used in those tasks.

https://www.sesarju.eu/

D2.2 DATABASE STRUCTURE

Page 27

6 References

[1] (Modus DMP) Modus Data Management Plan (DMP), Deliverable ID: D2.1, November 2020.

Edition: 1.1. Updated version 1.2 submitted in December 2021.

[2] (UkGov) Statistical datasets by GOV.UK, Available

at: https://www.gov.uk/government/statistical-data-sets/

[3] (OAG) Schedules Analyser: User guide, OAG Analytics. Available

at: https://www.oag.com/schedules-analyser-user-guide

[4] (MERITS-guide) MERITS User Guide, Version 17.1. Date: 2017-02-28. International Union of

Railways (UIC)

[5] (VISTA) Final Project results Report, Deliverable D1.2. H2020 project "Vista" coordinated by

the University of Westminster. Edition date: 09 November 2018.

[6] (POEM) Passenger-Oriented Enhanced Metric (project POEM), coordinated by the University

of Westminster. Project webpage: https://devengagewiki.com/POEM

[7] (AWSGlue) AWS Glue: Simple, scalable, and serverless data preparation. Available

at: https://aws.amazon.com/glue/?whats-new-cards.sort-

by=item.additionalFields.postDateTime&whats-new-cards.sort-order=desc

[8] (SURE) Building a routing engine. Part 2: Skymantics Universal Routing Engine (SURE).

Available at: http://skymantics.com/2020/05/19/building-a-routing-engine-part-1-about-

ogcs-open-routing-api-2/

[9] (Git) Data Management Planning: Version Control. Available

at: https://guides.nyu.edu/data_management/version-control

[10] (RDG-manual) The Rail Delivery Group. Available

at: https://www.raildeliverygroup.com/about-us.html. Accessed: 14 September 14 2021

[11] (RDG Fares) Fares Data, The Rail Delivery Group. Available at: http://data.atoc.org/fares-

data. Accessed: 14 September 14 2021

[12] (Renfe Kaggle) Spanish Rail Tickets Pricing - Renfe. Publicly available dataset, under GPL 2

license. Available at: https://www.kaggle.com/thegurusteam/spanish-high-speed-rail-

system-ticket-pricing/metadata. Accessed: 20 September 2021.

https://www.sesarju.eu/
https://www.gov.uk/government/statistical-data-sets/
https://www.oag.com/schedules-analyser-user-guide
https://devengagewiki.com/POEM
https://aws.amazon.com/glue/?whats-new-cards.sort-by=item.additionalFields.postDateTime&whats-new-cards.sort-order=desc
https://aws.amazon.com/glue/?whats-new-cards.sort-by=item.additionalFields.postDateTime&whats-new-cards.sort-order=desc
http://skymantics.com/2020/05/19/building-a-routing-engine-part-1-about-ogcs-open-routing-api-2/
http://skymantics.com/2020/05/19/building-a-routing-engine-part-1-about-ogcs-open-routing-api-2/
https://guides.nyu.edu/data_management/version-control
https://www.raildeliverygroup.com/about-us.html
http://data.atoc.org/fares-data
http://data.atoc.org/fares-data
https://www.kaggle.com/thegurusteam/spanish-high-speed-rail-system-ticket-pricing/metadata
https://www.kaggle.com/thegurusteam/spanish-high-speed-rail-system-ticket-pricing/metadata

